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1 GENERAL INFORMATION 

1.1 The cone-to-cylinder socket connection 
A new connection method, which is called cone-to-cylinder socket connection, is developed in 
Japan in order to facilitate connecting a circular hollow section member to another cylindrical or 
different shaped section member. As shown in Figure1, the apex part of a cone is inserted into the 
open mouth of a cylinder, where the foot diameter of the cone is larger than the inner diameter of 
the cylinder, and then a connected member is placed on the foot of the cone.  In general, a lid plate 
is attached in advance to the foot of the cone in order to serve as a splice to fix the connected 
member. Experimental test and numerical analysis on the socket connection conducted by Steel 
Structural Laboratory, the University of Tokyo revealed that the connection is strong and rigid 
enough to be applied to construction practice of low to middle-rise buildings (Kuwamura et al. 
2005a,b, Tomioka et al. 2006, Ito et al. 2008).  

1.2 Expected applications of the socket 
The benefit expected in this socket connection is that field connection of struts or piles of 
cylindrical section with other structural members such as beams and foundations is substantially 
simplified as sketched in Figure 2.  In addition, when the wall of the cone is metal-touched with the 
inner circular edge of the cylinder, the connection can be assumed a pin-support or pin-node in all 
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directions (Kuwamura & Ito 2007).  This is a great advantage of the connection, because such a pin-
joint substantially reduces the stresses in the cylindrical piles and mitigates the damages by a severe 
earthquake, which were largely observed in pile foundations in Kobe by the 1995 Hanshin-Awaji 
Earthquake Disaster.  From this point of view, an application of the cone to the connection of steel 
piles and foundation beams in house buildings is studied in practice by house builders. 
 

 Figure 1. Socket connection         Figure 2. Application of socket connection 

1.3 Scope of this paper 
In this paper, experimental test results of the socket connections are presented focusing the most 
important behavior when the socket is subjected to uniform compressive load.  The test data were 
extracted from a series of tests with more than a hundred specimens (Kuwamura et al. 2005a, 
Tomioka et al. 2006).  It is also shown the load carrying capacity is predicted from bending theory 
of shells. 

2 EXPERIMENTS 

2.1 Specimen 
The number of specimens introduced here is only 5, which are representative specimens designated 
by No.1, No.3, No.5, No.8, and No.11.  They are picked up from the data of more than 100 
specimens above mentioned.  The shape and construction of each specimen are shown in Figure 3.  
Each specimen is assembled from a short cylindrical pipe, a cone inserted into the open mouth of 
the cylinder, a square lid plate on the cone, and a circular ring to strengthen the cylinder edge.  The 
ring is furnished only to No.5 and No.11.  The joint between the cone and lid is metal-touched for 
No.1, No.3, and No.11, but welded for others.  The joint between the cylinder and cone is metal-
touched for No.1 No.5, and No.11, but welded for others.  This parametric scheme is shown in 
Table 1.   Other physical conditions are the same for all the specimens as shown in Figure 3.  It will 
be noticed that the apex angle of the cone is 90 degree in these five specimens and that the nominal 
thickness of the cone is only 4.5 mm.  
All of the materials employed to the cylinder, the cone, the lid, and the ring are mild steels with a 
nominal tensile strength of 400MPa.  They are designated by SS400 for plate, STK400 for cylinder.  
The mechanical properties obtained from laboratory coupon tests are shown in Table 2.  The cone is 
formed from the plate of SS400 by cold bending, and then seam-welded. 

2.2 Loading 
Each specimen is loaded by central compression through a rigid piston-head of test machine as 
shown in Figure 3.  Thus, uniform pressure is applied to the upper edge of the cone through the lid 
plate.   The load is quasi-statically applied and the relative displacement between the piston head 
and the test bed are successively measured.  The loading is stopped when the maximum load is 
attained and further sufficient deformation due to damage is observed. 
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Figure 3.  Specimen setup and loading 
 
Table 1. Experimental conditions and results 

 
 Table 2.  Material Properties 

 

2.3 Failure mode 
Five modes of failure shown in Figure 4 are anticipated.  The symbol ‘CyE’ indicates ‘Cylinder 
Edge failure’ like a trumpet, which is associated with the sinking of the cone into the interior of the 
cylinder.  ‘CyE’ is expected to occur only in the case that the cone and the cylinder are metal-
touched without welding.  ‘CoE’ indicates ‘Cone Edge failure’, which is expected to occur only in 
the case that the cone is metal-touched with the lid plate.  ‘CoB’ indicates ‘Cone Bending faifure’, 
and ‘CoBu’ indicates ‘Cone Buckling failure’, but it may be difficult to distinguish ‘CoB’ and 
‘CoBu’ in the plastic behavior.  ‘RiT’ indicates ‘Ring Tension failure’, which is obviously 
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anticipated for the cylinder furnished with the ring where the cylinder is not welded to the cone.  
The reality of the failure mode observed in the experiment is given in Table 1, and the 
configurations of the specimens after test are shown in Figure 5.  In the specimen No.1, ‘CyE’ was 
first observed and then ‘CoE’ governed the final stage.  ‘RiT’ was not visually observed, but was 
possible in No.5.  
 

Figure 4. Failure modes 
 

Figure 5. Failure deformation after test 

2.4 Load-displacement curve 
The relationships between compressive load and axial shortening are shown in Figure 6.  The 
specimens No. 1 and No.11 have two peaks in their load-displacement curve. In No.1, the first peak 
is due to the mode ‘CyE’, and the second peak is ‘CoE’ as mentioned above.  In No. 11, both peaks 
are due to ‘CoE’, which are attributed to different states of equilibrium in small deformation and 
large deformation.   

Figure 6. Load-displacement curves from experiment 
 

Figure 7. Standard load-displacement curve and definition of strength and stiffness 
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The load-displacement curve of the socket connection is generally drawn like the curve of Figure 7. 
This defines several important properties: the play at the initial stage of loading which comes from 
some inevitable looseness between the elements constituting the connection, the elastic line which 
gives the stiffness of the connection, the yield load which serves as the strength limit of allowable 
stress design, the plastic load which serves as the strength limit of plastic design, and the ultimate 
load which serves as the safety margin for extreme loading condition in abnormal situation.  These 
properties are summarized in the above Table 1. 

2.5 Remarks on experimental results 
The strongest one among the five is No.8 that has welds at the joint of cone and lid as well as of 
cone and cylinder, but its behavior after the maximum load is less ductile than others, because the 
ultimate load is somewhat related to the shell buckling.  The yield load governed by ‘CyE’ is fairly 
low as known from 88kN of No.1, but this type of failure is easily restrained by the ring such that 
the yield load is 142kN of No.5 or 120kN of No.11.  This means that the weakest point in this 
socket connection without weld lies in the free edge of the cylinder.  Since it is not economical to 
increase the thickness of the cylindrical member to get a higher CyE-strength, the ring or weld is a 
better choice.  The second weakest lies in the upper free edge of the cone as observed in No.11.  
This suggests that the cone should be welded to the lid plate in advance, which seems more 
convenient in the practice of construction.  In practical view point, all these specimens seem to be 
applicable to the pile heads of low-rise residential houses, because the vertical load at the column 
base is not more than 50kN in such buildings, which is exceeded by the yield loads of all 
specimens. 
The play at the initiation of loading is not more than 0.5 mm, which is small enough to avoid an 
error in site construction.   The elastic stiffness is sufficiently large such that the shrinkage of the 
connection is less than 0.3 mm under the load of 50kN. 

3 THEORETICAL ANALYSIS 

3.1 Bending failure of cylinder edge 
The yield, plastic, and ultimate loads for the cylinder edge failure ‘CyE’ were theoretically analyzed 
by Kuwamura et al. (2005b).  The solutions are as follows: 

Py = Apσ yp
2a1β3Dp

Etp
⋅

tan α + μ
1 − μ tanα

 (1) 

Pp = Py + Ap
σ yp

2

E
np −1( )⋅

1 + μ cot α
1 − μ tanα

 (2) 

Pu = Py + Ap
σ yp

E
⋅
σ yp + σ up

2
nu −1( )⋅

1 + μ cot α
1 − μ tan α

 (3) 

where 

β =
3 1− ν 2( )
a1

2tp
2

4 , and Dp =
Etp

3

12 1 −ν 2( ) (4) 

Other symbols are defined in Figure 8.  The yield load is derived from the bending theory of a 
circular cylinder subjected to axially symmetrical load.  The plastic load that assumes a band 
pressure as shown in Figure 9 is different from the solution by Eason and Shield (1955) which 
assumes a line load.  The strain hardening factors np  and nu  are properly defined from the 
observation of the stress-strain relation of the material of the cold-formed cylinder, so that np=15 
and nu=70 (Kuwamura et al. 2005b).  The calculated values of strength are shown in the column 
CyE of Table 3 for several possible values of the friction coefficient μ .  Comparing the calculation 
with the experimental results of No.1, the calculation is adequate for the friction coefficient ranging 
from 0.2 to 0.3, which is the normal value often observed at the contact between steel and steel. 
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Figure 8. Symbols for cylinder edge failure        Figure 9.  Yield zone for cylinder edge failure 
 
Table 3. Comparison of analytical and experimental values of yield, plastic, and ultimate loads 

3.2 Tension failure of ring 
The yield, plastic, and ultimate loads for the ring tension failure ‘RiT’ were also theoretically 
analyzed by Kuwamura et al. (2005b).  But here they are skipped, because reference test data is 
absent in the five specimens.  

3.3 Bending failure of cone edge 
The yield, plastic, and ultimate loads for the cone edge failure ‘CoE’ were also theoretically 
analyzed by Kuwamura et al. (2005b).  The yield load is based on the elastic bending theory of a 
cone.  Since the equations for calculating the yield load is very lengthy, only the basic idea is 
explained herein.  The stresses and displacements shown in Figure 10 of a cone subjected to axially 
symmetrical load are solved by Flugge (1973) and Timoshenko et al. (1959), and their values are 
determined by the following boundary conditions with the reference of Figure 11: 

Qs = −
P

2πa2
sinα − μ cosα( )   and   Ms = 0   at  s = s2  (5) 

 

Figure 10. Stresses and displacements of a cone  
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Then assuming the following simplified yield criterion, 

Nθ = σ yc tc     at   s = s2  (6) 

we obtain the yield load Py when the upper free edge of the cone yields. 
The plastic and ultimate loads are based on the plastic zone shown in Figure 12, and are given by 

Pp = 2π
σ yctc2

4
⋅

tan α
tanα − μ

2 2s2
tc tan α

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (7) 

Pu = Pp
σuc
σ yc

 (8) 

Figure 11.  Symbols for the analysis of cone edge failure   Figure 12. Plastic zone of upper cone 
 
The above analytical solutions are compared with the test results of specimen No.3 in the column of 
‘CoE’ of Table 3.  The calculation is adequate for the friction coefficient ranging from 0.2 to 0.4.  
Noticing that specimen No.11 is less strong than specimen No.3, both of which have the same 
failure mode ‘CoE’, the boundary of the lower part of the cone has some influence on the strength, 
but this is not incorporated in the above theoretical solutions. 

3.4 Bending failure of cone wall 
The yield, plastic, and ultimate loads for the bending failure of cone wall, i.e., ‘CoB’ mode were 
analyzed by Kuwamura et al. (2005b).  The yield load is also based on the bending theory of a cone 
above mentioned, in which following five boundary conditions are employed with the notations in 
Figures 10 and 13: 

Figure 13. Symbols for the bending failure of cone wall 
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Ms1 = Ms , M s1 = Ms , δ1 = δ 1, V1 = V 1  (10) 
With the following simple yield criterion: 
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Ms = σ yc
tc2

6
 (11) 

we obtain the yield load Py.  The plastic and ultimate loads are  

Pp = 1.5Py , Pu =
σ uc
σ yc

Pp  (12) 

The calculated loads are compared with the data of No.5 in the column of ‘CoB’ of Table 3. In this 
case large friction coefficient is favorable, because the expansion of the cone due to Poisson’s ratio 
makes the cone sit on the edge of the cylinder. 

3.5 Buckling failure of cone wall 
It is known that the elastic buckling strength of a cone is equal to that of a cylinder which has the 
same curvature as the principal curvature of the cone (Seide 1596).  Thus the buckling strength of 
an elastic cone is represented by the Donnell’s formula by using a/cosα  instead of a.  In this case of 
specimen No.8, however, the cone goes into the inelastic range, the Young’s modulus should be 
modified.  If Gerard’s modification is applied, the inelastic buckling load of the cone is 

σcr =
Et Es

3(1 −ν 2 )
⋅
tc cosα

a
 (13) 

Here the tangent modulus Et and secant modulus Es are simply assumed as  
Et
E

, Es
E

=1 −
σ − 0.6σ yc

σ uc − 0.6σ yc
 (14) 

we obtain the following explicit equation for the inelastic buckling strength of the cone: 

Pcr = 2πatc ⋅
τo

κ τo − 0.6( )+1 /σ yc
,   where   κ =

a 3(1 −ν 2 )
Etc cosα

,   τo =
σ uc
σ yc

 (15) 

Since the buckling wave is observed in the lower part of the cone above the cylinder, the radius a1 
of the cylinder is employed for a,  we obtain Pcr = 414kN, which is close to the ultimate load 424kN 
of specimen No.8 with the failure mode ‘CoBu’. 

4 CONCLUSIONS 

A new type of connection called cone-to-cylinder socket connection is introduced.  This will serve 
to significantly facilitate the site construction of cylindrical members such as pile cap, base of pipe 
strut, support of pipe truss, and pipe-to-pipe joint.  The compression test demonstrated this 
connection has enough strength and stiffness for the use in moderate scale of structures.  The yield, 
plastic, and ultimate loads of the connection were analyzed by the bending theory of shells. 
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